Structure and thermophysical properties of single-wall Si nanotubes
نویسندگان
چکیده
منابع مشابه
Structure and thermophysical properties of single-wall Si nanotubes
In this work, molecular dynamics (MD) simulation based on the environment-dependent interatomic potential is carried out to explore the structure, atomic energy distribution, and thermophysical properties of single-wall Si nanotubes (SWSNTs). The unique structure of SWSNTs leads to a wider range energy distribution than crystal Si (c-Si), and results in a bond order in the range of 4.8~5. The t...
متن کاملOptoelectronic properties of single-wall carbon nanotubes.
Single-wall carbon nanotubes (SWCNTs), with their uniquely simple crystal structures and chirality-dependent electronic and vibrational states, provide an ideal laboratory for the exploration of novel 1D physics, as well as quantum engineered architectures for applications in optoelectronics. This article provides an overview of recent progress in optical studies of SWCNTs. In particular, recen...
متن کاملOptical Properties of Single-Wall Carbon Nanotubes
Four kinds of single-wall carbon nanotubes (SWNTs) with different diameter distribution have been synthesized and optical absorption spectra have been measured. Three large absorption bands due to the optical transitions between spike-like density of states, characteristics of SWNTs, were observed from infrared to visible region. Comparing with the calculated energy band, it has been concluded ...
متن کاملinvestigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولStructure and electronic properties of single–walled zigzag BN and B3C2N3 nanotubes using first-principles methods
The structure and the electronic properties of single-walled zigzag BN and B3C2N3 nanotubes (n, 0; n=4–10) were investigated using first-principles calculations based on a density functional theory. A plane–wave basis set with periodic boundary conditions in conjunction with Vanderbilt ultrasoft pseudo-potential was employed. The energy gap of ZB3C<su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica B: Condensed Matter
سال: 2008
ISSN: 0921-4526
DOI: 10.1016/j.physb.2007.11.016